Restoration of lymphoid populations in a murine model of X-linked severe combined immunodeficiency by a gene-therapy approach.

نویسندگان

  • M Lo
  • M L Bloom
  • K Imada
  • M Berg
  • J M Bollenbacher
  • E T Bloom
  • B L Kelsall
  • W J Leonard
چکیده

X-linked severe combined immunodeficiency (XSCID) is a life-threatening syndrome in which both cellular and humoral immunity are profoundly compromised. This disease results from mutations in the IL2RG gene, which encodes the common cytokine receptor gamma chain, gamma(c). Previously, we generated gamma(c)-deficient mice as a murine model of XSCID. We have now used lethally irradiated gamma(c)-deficient mice to evaluate a gene therapeutic approach for treatment of this disease. Transfer of the human gamma(c) gene to repopulating hematopoietic stem cells using an ecotropic retrovirus resulted in an increase in T cells, B cells, natural killer (NK) cells, and intestinal intraepithelial lymphocytes, as well as normalization of the CD4:CD8 T-cell ratio and of serum Ig levels. In addition, the restored cells could proliferate in response to interleukin-2 (IL-2). Thus, our results provide added support that gene therapy is a feasible therapeutic strategy for XSCID. Moreover, because we used a vector directing expression of human gamma(c) to correct a defect in gamma(c)-deficient mice, these data also indicate that human gamma(c) can cooperate with the distinctive cytokine receptor chains such as IL-2Rbeta and IL-7Ralpha to mediate responses to murine cytokines in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نگاهی به ژن درمانی، پیشرفت‏های اخیر و چشم انداز آینده

Human gene therapy has attracted increasing attention as a highly encouraging therapeutic approach to treat wide variety of diseases, other than genetically inherited and monogenic disorders. This approach entails the introduction and expression of a variety of nucleic acids into human target cells for therapeutic purposes. In this article, we review the history, highlights, recently progresses...

متن کامل

Retroviral-mediated gene correction for X-linked severe combined immunodeficiency.

X-linked severe combined immunodeficiency (XSCID) is a lethal disease caused by a defect in the gene encoding the common gamma chain (gamma-c) of the receptor for interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15. Allogeneic bone marrow transplantation, the current therapy of choice for this defect, is often complicated by graft-versus-host disease and/or incomplete reconstitution of B-lymphocy...

متن کامل

Limiting Thymic Precursor Supply Increases the Risk of Lymphoid Malignancy in Murine X-Linked Severe Combined Immunodeficiency

In early gene therapy trials for SCID-X1, using γ-retroviral vectors, T cell leukemias developed in a subset of patients secondary to insertional proto-oncogene activation. In contrast, we have reported development of T cell leukemias in SCID-X1 mice following lentivirus-mediated gene therapy independent of insertional mutagenesis. A distinguishing feature in our study was that only a proportio...

متن کامل

Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hematopoietic cells.

Recent reports linking insertional activation of LMO2 following gene therapy for X-linked severe combined immunodeficiency (X-SCID) have led to a re-evaluation of risks following gene therapy with retroviral vectors. In our analysis of 702 integration sites in rhesus macaques that underwent transplantation up to 7 years earlier with autologous CD34+ cells transduced with amphotropic murine leuk...

متن کامل

Establishment of modified retroviral vector targeting X-linked severe combined immunodeficiency.

Gene therapy targeting hematopoietic stem cells has been proposed as a potential therapy for numerous genetic disorders affecting hematopoiesis. Moloney murine leukemia retroviral vectors are now widely used for clinical gene transfer into hematopoietic progenitors and progeny. However, maintaining expression of therapeutic genes inserted via moloney murine leukemia virus (MoMLV)-based vectors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 94 9  شماره 

صفحات  -

تاریخ انتشار 1999